
Abstract—The use of information entropy as a quantitative
measure of uncertainty for radar resource management and
control objectives is explored and applied to issues of current
interest. It is seen to be rigorous and objective, and therefore
potentially superior to heuristic, rule-based approaches for
problems which can be formulated in probabilistic terms. It is
particularly appropriate for sensor systems in general which
have as their objective the acquisition of information, but which
are dominated by uncertainty and subject to time and resource
constraints. Examples of the application of this control and
management methodology are given to radar problems on widely
differing time-scales: the scheduling of track updates in a beam-
agile radar (ms), and the tasking of a constellation of SAR
surveillance satellites for maritime search and tracking (hours).

Index Terms—Radar, Radar Detection, Adaptive Control,
Resource Management, Tracking, Synthetic Aperture Radar.

I. INTRODUCTION

N modern radars there is considerable scope for selecting,
and hence optimizing, control parameters and scheduling

control actions for the purpose of enhancing overall
performance over a range of time-scales. Any attempt to
optimize control should be performed adaptively, that is in
response to changed external circumstances, and within the
context of an overall objective which, in the case of radars, is
the acquisition of information. However, information derived
from radar detection, estimation and data processing
algorithms is fundamentally uncertain due to noise and clutter
affecting detectability and generating false alarms,
unpredictable target motion between detections, and
ambiguities in the associations between detections and
established tracks. If the degree of uncertainty  in information
can be quantified then constrained radar resources can be
managed so as to minimise it over time. Some previous
approaches [7] have formulated the radar control problem in
terms of a cost function which represents radar time with
constraints on the errors (i.e. uncertainty) in the information;
the present authors take the view that as available radar time is
fixed it should more properly be represented as a constraint
and the objective should be to minimise the uncertainty.

For estimation, prediction and control problems which can
be formulated probabilistically, that is in terms of a time-
varying probability distribution over a state space, a suitable
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e of uncertainty is information entropy. In fact it can be
[1] that information entropy is a unique measure of
inty (except for an arbitrary multiplicative constant)
satisfies a set of postulated axioms which such a
e should be reasonably expected to satisfy, in particular
ncreases with increasing uncertainty and is a maximum
ll states are equally probable. The use of entropy in
 in the context of robotic navigation is discussed in

opy can be used to measure the uncertainty in the
 state of a system but, regarded as a random variable,
more usefully used to predict the uncertainty in a future
f a system. Control parameters may then be selected or
ed and actions scheduled so to minimise the expected
uncertainty. This enables a methodology to be
hed in which (i) the estimate for the current state of the
 is updated as measurements are made (which in the
f a radar generally means the numbers, locations and
 of targets), (ii) a future state of the system is predicted
ically) for a particular choice of control parameters
n allowable set (which may comprise a mix of discrete-
ntinuous-valued interdependent variables), (iii) the
d (i.e. average) uncertainty of the future state is
ied (using entropy), and (iv) the control parameter
selected which minimise the expected uncertainty

t to time and resource constraints).
abilistically, this is the best that can be achieved,
ng that relevant probabilities are known for the
ance of the sensors and the evolution of the system

n observations. Two applications of the methodology
sented in this paper: the optimal scheduling of track

s in a multifunction phased array radar (PAR), and the
l tasking of a constellation of synthetic aperture radar
satellites for tracking maritime targets.

II. THEORETICAL PRELIMINARIES

ndom variable X  (scalar or vector) is defined on a
 whose states may be discrete or continuous,

d or unbounded. A probability density function )(Xp

ed over  such that 1)( dXXp  and with the
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entropy of X  defined as

dXXpXpXH )(log)()( (1)

In practice, X  will represent the state of a target or set of
targets in terms of their locations and velocities and at any
time will not be known precisely due to sensor imperfections,
target mobility and ambiguous discrimination between targets.
It is therefore appropriate to represent X , or an estimate of it,
in terms of its probability density function, )(Xp , which will
evolve over time as targets move between observations and
increase uncertainty in their locations, and can be updated by
measurements from sensors as they arise using Bayes' Rule:

}Pr{
)()|()|(

Y
XpXYLYXp (2)

where }|Pr{)|( XYXYL  is the likelihood function for

the sensor or set of sensors, )(Xp  is the a priori distribution,

)|( YXp  is the a posteriori distribution following the

observation Y , and the probability of observing Y  is

dXXpXYLY )()|(}Pr{ . In practice, Bayesian

estimation may be implemented efficiently as a Kalman filter
if the appropriate conditions apply (linearity and Gaussian-
distributed errors). Note that discrete state space versions of
these expressions are possible and will be used.

A particularly useful result is that if the random variable
TyxX ),(  defined over yx , with xx

and yy  independent random variables, then

)()(),( ypxpyxp  which leads to

)()(),( yHxHyxH . By induction, if
T

nxxxX ),,,( 21  with nxx ,,1  mutually
independent, then

n

i
in xHxxxH

1
21 )(),,,( (3)

III. MULTIFUNCTION PAR  CONTROL APPLICATION

The objective is to continuously track a number of
independent airborne targets using a single multifunction
phased-array radar by observing them at intermittent times so
as to determine their locations and update their tracks. The
update rate for each target should ideally be as frequent as
possible in order to maximise the probability of the target
being within the beam, and the dwell time (time on target) as
long as possible in order to maximise the SNR, and hence
probability of detection, whilst keeping the false alarm rate
low. However, radar time generally needs to be shared
between a number target tracking jobs, as well as the
surveillance and weapons guidance functions. If the update
rate or dwell time are too low then a target may not be
detected resulting in additional looks being scheduled with
high priority in order to revisit it. The decision-making
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x trade-offs over time to ensure that the radar’s
es are used efficiently, and that as the radar becomes
ded, its performance degrades gracefully rather than
phically ([7]-[10]).
ose that there are N  targets to be tracked and each
as a dynamic equation of the form

)()()()1 kkk vxF (4a)
easurement equation

)()()( kkk wxH (4b)

)(kv and )(kw are sequences of zero-mean, white
an noise processes, as normally specified for Kalman
ackers [4]. Then )(kx  for times kt , ,1,0k , is a
riate Gaussian distribution which may be estimated in

of its mean )(ˆ kx  and covariance matrix )(kP . The
ion is performed in two stages in a Kalman filter: the
ed state )|1(ˆ kkx  and )|1( kkP  based upon

namic equation between times kt  and 1kt , and the

d state )1(ˆ)1|1(ˆ kkk xx  and

)1()1|1 kk P  based upon a set of

ements )1(kz  at time 1kt .

state vector x̂  will generally represent the target
n and velocity in three dimensions, and P  the
onding covariances, but for the purpose of beam
ling to maintain tracks' we are only interested in the
ts of the covariance matrix representing the error in
azimuth and elevation. Let this be the matrix )(tiQ ,
 ith target at time t , then the entropy representing the
inty in its position is (Theorem 9.4.1, [2])

|})(|4log{ 22
2

1 te iQ (5)
the result of Section II, the entropy associated with the
stem of N independent targets at time t is

}|)(|4log{)(
1

22
2

1
1

N

i i
N

i i teth Q (6)

 expression provides the means for objectively
ying the overall uncertainty associated with a set of
ndent targets and balancing the resources allocated to
y scheduling their individual updates so as to minimise
ernatively, the optimal control problem could be
ated so as to specify an acceptable level of uncertainty
onstraint and minimise the resources necessary to

in that level. This might be an appropriate formulation
et of high priority targets which must be tracked at all
with remaining radar resources applied to low priority
 and other functions.
 formulation is fairly general and could be applied to
x situations. However, in the following it is applied to
lified and analytically tractable situation so as to

strate that it yields intuitively reasonable results. For
ecial case when the target azimuth and elevation



coordinates are independent, the Kalman filter equations
decouple and each coordinate can be predicted and updated
separately. If, for the ith target, ix  and iy  are the azimuthal

and elevation coordinates and xi,  and yi,  are their

variances then yixii ,,|| Q  and

yixii ,, loglog||log Q (7)

Hence at time nt
N

i
n

yi
n

xin etH
1 ,,2

1 loglog2log)( (8)

The decoupled Kalman filter for the dynamic equation
applied to the ith target enables the variance to be predicted at
time  later from the current covariances, thus:

2
,,

2
,

2
, 2)|()|1( xixixixi dbkkkk

2
,,

2
,

2
, 2)|()|1( yiyiyiyi dbkkkk

where xib ,  and yib ,  are the position/velocity covariances for

the  ix  and iy  variables for the ith target, and xid ,  and yid ,

are the velocity variances.
Suppose that at this time it is proposed to select a target and

point the beam towards its predicted position, then the
consequence is that either the target is detected or it is not. In
each case we can compute what the entropy will be and from
our knowledge of the detection probability compute the
expected entropy. For targets which are not selected the
expected entropy will be the same as the predicted entropy.
We can then decide which of the N targets should be observed
so as to minimise the overall entropy.

If the target is detected then the decoupled Kalman filter
measurement equations will update the covariances thus:

2
,

2
,

2
,

1
)|1(

1
)1|1(

1

xixixi kkkk
where xi,  is the variance of the measurement error in the ix
coordinate. Therefore the entropy associated with the ith target
after detection, will be

)1|1(log)1|1(log ,2
1

,2
1 kkkk yixi

The probability of this occurring is
Pr{target detected}=Pr{target detected AND target in beam}
=Pr{target detected | target in beam}Pr(target in beam}

BD PP
where )1/(1)( SNR

FAD PP  for a Swerling type I fluctuating

target and BP  is estimated by integrating the target
probability distribution over the 3dB pencil beam width.

Note that the Kalman filter does not take account of non-
detections. If a target is assumed to exist, a region observed
and the target not detected then this is information which
could be used by a Bayes filter to update the target’s
locational probability distribution. However, the updated
distribution would no longer be Gaussian so a Kalman filter
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ill tend to select those targets which have the largest
ed error covariances, the smallest measurement errors
 largest probabilities of being detected which conforms
tuition.
function to be optimised in optimisation theory is
 referred to as an objective function but in operations
h and engineering it is often referred to as a utility
n which is to be maximised or a cost function which is
inimised. The problem of optimal scheduling of track

s has been posed in both forms. In [8] and [9] it is
ated as a nonlinear optimal control problem with the
ve of minimising the radar energy needed to update N
 and in [10] a cost function is minimised which is the
tion of the sum of the discounted costs for each target
 infinite time horizon. Blackman in [3] postulates the
ce of a utility function ),( yxU  for two target
es x  and y  (such as errors in range and angle) which
 maximised and assumes that their independence leads
ear sum )()(),( 21 ybUxaUyxU  (a separable

ve function) but states that the choice of a utility
n is a subjective matter. This paper has demonstrated
tility function can be defined objectively and uniquely,
t separability arises naturally from (3). Separability is a
le attribute of a mathematical programming problem.



Having defined an objective function which quantifies
uncertainty, it is necessary to decide for which future point in
time, or over what time period, its expectation should be
minimised, that is the choice of time horizon. The objective
function proposed in this paper in terms of entropy would be
used to determine the sequence of optimal track updates which
reduces the overall uncertainty at some future point in time.
The length of time should be sufficiently long that each
possible track update is capable of being considered, but not
so long that the prediction is unrealistic. Following the next
track update, the sequence will need to be revised if there is a
failure to detect the target. This will occur from time to time
for each target.

The complexity of an agile beam radar is such that the
preceding analysis has had necessarily to be simplified so as
to render it analytically tractable for the purpose of
demonstrating the control methodology, but it could be
extended without difficulty to other adaptive radar control
issues. For instance it could be used in conjunction with
sophisticated trackers such as interactive multiple model
(IMM) trackers and represent optimal searching to reacquire
targets, and it could incorporate the target dwell time as a
control parameter, as well as the choice of waveform and
detection thresholds in determining the optimal schedule.
However, the precise formulation of the optimal scheduling
problem would be highly dependent on the particular system
characteristics.

IV. SAR SATELLITE CONSTELLATION TASKING APPLICATION

A fixed constellation of satellites with on-board SAR
sensors is used to search for, estimate the location of, and
track surface maritime targets. When within range of a ground
station, they transmit sensed data for processing and are
tasked for future observations. It is possible to control the
look-angle of the SAR and its resolution but the appropriate
choice of controls for each fly-pass depends upon the
information sought. For example, the strategy adopted for an
area or barrier search will differ from that for locating a
previously detected target or tracking a number of targets.
Since space-based surveillance resources are limited it is
important that they be applied effectively. If there is sufficient
time to process data and task sensors between fly-passes, then
it is only necessary to plan ahead to the next fly-pass of a
satellite which occurs at a predetermined time.

Bayesian estimation (see [5]) is used in preference to
Kalman filtering for wide area surveillance applications
because it can deal with search as well as tracking, and the
likelihood function )|(L  (see (2)) can represent non-
linearities in the measurement model such as discrete
ambiguities in location (e.g. due to multi-path effects), and
target/environmental constraints (e.g. embodies knowledge of
land masses, and targets masked by cloud cover affecting
electro-optic sensors).

The region  of interest is discretised into numbered cells,
each cell of which has sufficiently small area that the
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 is negligible. For simplicity the cells may be defined
imposition of a rectangular grid upon . Without loss
rality, let there be N  cells where the probability of a
eing occupied by a target at a time t  is

Ni ,,1 . Let the surveillance satellites have

to the region  at discrete instants of time
,, nt ,  which are known in advance and  will not,

eral, be equally spaced, then we write )( ni
n
i tpp .

times are referred to as epochs and the area accessed by
ite at the n

th
 epoch is denoted nA . Note that n

ip
e interpreted to mean either the probability of cell i
ing a target at epoch n  (as opposed to it not
ing a target), or alternatively the probability that a
target in the region  occupies cell i  (as opposed to
er cell). These represent alternative formulations of the
 and which of them is relevant will depend upon the

ation sought, as will be discussed. More general
ations are possible for multiple targets.
SAR sensors’ performances are modelled in terms of
robabilities of detection and false alarm. Depending
the resolution of the sensor and the intervening
ment, a sensor’s probability of detection for a cell is

f a target exists) and false alarm probability is fap .

at false alarm probability per cell has to be calculated
he false alarm distribution faP  per unit area (i.e., a

 distribution in 2-D) and the area of the cell i.e.,
APfa  where A  is the area of a cell. For simplicity

sumed that all cells are equal in area and that the false
istribution is uniform, hence fap  is spatially constant

given choice of resolution. The updating of the
ility distribution is based upon the observations using
 rule (2) which uses a likelihood function appropriate to
y in which the state space is structured.
arget motion update is computed to predict target
s between epochs n and n+1. This is usually based
a Gauss-Markov target motion model which is
lent to the dynamic equation (4a) but other models are
e which may be more appropriate to maritime targets
]).

earch
surveillance information objective is to determine the
ce of targets within a region  or detect targets
g or departing a region. There is no requirement to
them and therefore no need to maintain accurate
es of their locations or be able to associate new
ons with previous detections. A cell-based formulation
refore chosen in which cells are assumed to be
ndent and no unique association is made between



measurements and targets. This is adequate for determining
the existence of targets within  in the search phase of a

surveillance operation. The probability n
ip  is therefore to be

interpreted as the probability of a target occupying cell i at
epoch n. In other words each cell is an entire state space and
the probability of cell i not containing a target is n

ip1 . All
cells are independent which means that only cells which are
observed (whether or not a detection occurs) are updated
using Bayes’ rule. This takes the form
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for a detection and a non-detection event respectively in the
observed cell i at the (n+1)th epoch where 1ˆ n

ip  is the a priori
probability. By virtue of (3), the independence of the cells
implies that the entropy of the joint system, representing
uncertainty in the existence of multiple targets within , is
simply the sum of the individual cell entropies
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The choice of control action  which maximises the
expected change in entropy at the next fly pass of a SAR
satellite at epoch (n+1) is

}ˆ{max
)(
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n
i

n
i hh

where  determines both the size of the swathe, and hence
number of cells in the set )(A  which are observed, as well

as the sensor resolution through dp  and fap . The expected

entropy for a single cell i is (see [6])
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B. Track
Under the assumption that there exists a single target of

interest which can be discriminated from all other targets, all
observations can be associated with it for the purpose of
tracking. A Bayesian estimator can be derived which
simultaneously updates position and velocity, which is a
generalisation of the dynamic equation (4a). The likelihood
function for the single target tracking problem is more
complex than for the search problem.
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},, kj  must be in A (because a sensor can only
detections where it observes).
 I corresponds to the situation in which the target is
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od function is the probability that the target is detected
t there are k-1 false alarms in A (and hence M-k non-
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 in A and are known functions of the sensor resolution,
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where )|( ilL  is the sensor’s likelihood function defined as
the probability of obtaining measurement set

},,,{ 21 kjjjl  given that the target is in cell i , 1ˆ np  is

the a priori probability that the target is in cell i  (following

target motion update), and 
i

n
i

n pilLlP 11 ˆ)|()( is the

probability of obtaining the measurement set l . The multiple
detections arise from false alarms with at most one detection
corresponding to the actual target.

The expected entropy expression has the following physical
interpretation: it represents the change in entropy from the a
priori entropy with the second term on the r.h.s. representing
an increase in entropy due to sensor imperfections and the
third term representing a decrease but dependent on the sensor
coverage. Therefore the second and third terms explicitly
represent the trade-off between coverage and resolution.

V. IMPLEMENTATION ISSUES

As additional variables are incorporated into stochastic
problems the joint state spaces increase combinatorially so
methods need to be explored to control the size of the state
space such as exploiting independence between variables. The
problems should be formulated as generally as possible in the
first instance and then rational approximations applied. This
enables the magnitude of the approximation error to be
gauged. In the case of the single target tracking likelihood
function the generally small magnitude of fap  will tend to

limit the number of multiple (false) detections so an
approximation is possible to the number of states which need
to be accommodated.

Bayesian estimation has tended to be avoided for real-time
applications in the past because of its computational
overheads but recent developments in particle filtering have
rendered the approach more feasible. Its ability to represent
nonlinearities in the dynamic and measurement models makes
it more robust than Kalman filtering for tracking and data
fusion applications.

Entropy computations tend also to be computationally
burdensome due to the calculation of logarithmic terms over
all possible states. The expected entropy is even more
demanding because the expectation is taken over all possible
measurements. However expressions for the expected entropy
have been presented in terms of the expected change in
entropy following an observation. These expressions are
capable of rational approximation within the context of
specific problems of interest and reduce to separable problems
in certain instances. However, the question of interest is not
whether one is able to obtain a truly optimal solution, but
whether one is able to obtain the best solution possible within
the available time and computational resources. This may
require the use of efficient but sub-optimal heuristic search
methods such as constraint programming.
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problems presented have been stated fairly generally
t much discussion of constraints and optimisation
ues because the precise formulation of an optimisation
duling problem depends crucially on the nature of the
es (discrete or continuous, bounded or unbounded) and
nstraints (linear or nonlinear, equality, or inequality
ints).

VI. CONCLUSION

opy has been shown to be a useful and practical way of
ing uncertainty in information derived from radar
ations on disparate timescales. It can be used to monitor
ality of information already obtained, to predict the
 of future information resulting from a proposed control
or parameter value, or, most usefully, to select the
l control action and parameter value which results in
imal expected uncertainty and hence makes best use of
ar resources. Depending upon the problem of interest,
ropy objective function can be coupled with resource
ints to formulate a constrained optimisation problem
e if necessary.
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